

Department of Industrial Engineering, University of Firenze, Firenze (Italy)

> Leonardo - Engineers for Integration Torino (Italy)

TURBOCHARGHED DIESEL ENGINE COUPLED WITH PLANING VESSEL

Ricardo Software 2015 European User Conference

Prof. Giovanni Ferrara - Giovanni Vichi - Pietro Bianchi

Field of research

Engines for planing boats

UNIVERSITÀ

degli studi

DIEF

Dipartimento di Ingegneria Industriale

- Marine turbocharged Medium Duty diesel engines
 - Matching of engine propeller hull

✓ Two competing requirements:

- High power density in order to reach high peak velocity;
- Low End Torque Availability to overcome the peak of resistance in the displacement to planing transition phase.

Framework: Boat Displacement to Planing transition

JNIVERSITĂ

DIEF Dipartimento di Indegneria Industriale

Engine Matching to Transmission

- Turbocharger Matching to boat:
 - ✓ Surplus of power after transition:
 - o Standard solution

DIEF

Dipartimento di Ingegneria Industriale

UNIVERSITÀ

DEGLI STUDI

- Dual gear transmission
- Variable pitch propellers
- Innovative solutions
 - Electrical or mechanical charger in series with the turbocharger
 - MGU Turbocharger
 - » No turbo-lag and overpressure air immediately available to the engine even at low rpm
 - » It is possible to use the turbocharger to recover the surplus energy when the peak of resistance is overtaken
 - » The surplus energy used for the subsequent acceleration or for the auxiliary equipment

Aim of the activity:

Provide a simulation tool for planing boat transmission dynamics

- ✓ Development of an *engine*transmission-boat numerical model:
 - Goal:

UNIVERSITÀ

DEGLI STUDI

DIEF

Dipartimento di

Ingegneria Industriale

- evaluate during the design phase if the engine-turbocharger matching is able to guarantee both high power and low end torque to start "planing"
- Numerical Tools:
 - 1D engine model built in Wave
 - Mathematical model to simulate the longitudinal dynamic of the boat implemented in IGNITE
 - Integration of the engine model with the boat model:
- Future development:
 - evaluate the coupling among engine MGU Turbocharger, operating also in energy recovery mode.

Road Map

Boat dynamic

DIEF

Dipartimento di

Indegneria Industriale

JNIVERSITĂ

Simplest Propeller Model:

- \checkmark only thrust to the hull transmitted to boat
- ✓ Immersed free propeller
 - Characteristics independent from the trim of the boat (e.g. from the flotation or boat pitch angle)
 - Characteristic parameters of the propellers
 - Grouped by reference series •
 - Number of blades >>
 - Pitch / Diameter Ratio >>
 - Projected blade area / Disc area Ratio >>

- Ref.: Guidance and control of ocean vehicles. T. Fossen
- Ref.: Nozioni di macchine marine, Accademia Navale
- Ref.: Fondamenti di Idrodinamica, U. Costaguta
- Ref.: Marine propellers and propulsion, J. Carlton
- Ref.: The prediction of power performance of planing crafts, J.B. Hadler, SNAME, 1966
- Ref.: Fondamenti e applicazioni di propulsione navale, G. Trincas, Università di Trieste
- Ref.: Lo scafo da diporto, A. Payer, M. Vassalle
- Ref.: Le turbomacchine, G. Manfrida, S. Stecco
- Ref.: Meccatronica, Elementi di trazione elettrica, B. Allotta, L. Pugi

FONARDO

Integration

TORINO

Performance of the propeller from experimental tests in open-water available in literature

- Advance coefficient
- Thrust coefficient
- Torque coefficient

$$J = \frac{v_a}{n \, d}$$

$$K_T = \frac{T}{\rho \, n^2 d^4}$$

$$K_Q = \frac{Q}{\rho \, n^2 d^5}$$

- v_a Propeller's speed of advance
- n Propeller's rotational speed
- d Propeller's diameter
- ρ Water density
- T Thrust
- Q Propeller's torque

Propeller efficiency (η)
 ✓ Function of the propeller coefficients

$$\eta = \frac{T v_a}{2\pi n Q} = \frac{P_T}{P_D} = \frac{K_T \rho n^2 d^4 v_a}{2\pi K_Q \rho n^3 d^5} = \frac{K_T v_a}{K_Q 2\pi n d} = \frac{K_T J}{2\pi K_Q}$$

- $\circ~P_{T}$: Thrust power of the propeller
- \circ P_D: Power absorbed by the propeller behind the hull

DIEF

Dipartimento di

Ingegneria Industriale

- Thrust T is function of the variation of the axial component of the flow velocity
 - ✓ The flow acceleration due to the enthalpy drop Δh at the propeller
- ➢ Once defined the propeller characteristics
 ✓ Thrust: $T = K_T \rho n^2 d^4$
 - ✓ Propeller's torque: $Q = K_Q \rho n^2 d^5$

DIEF

Dipartimento di Ingegneria Industriale

- Compared to the open-water condition the propeller works in a disturbed flow
 - ✓ The water around the aft assumes an advancement motion in the same direction of the ship

 \circ Wake field

- ✓ Wake velocity $\rightarrow v_w = v v_a$
 - $\circ v \rightarrow boat speed$
- ✓ Taylor wake factor w

 \checkmark v_a is needed to estimate the dimensionless coefficients of the propeller

DIEF

Dipartimento di

Ingegneria Industriale

UNIVERSITÀ

> Newton's second law in longitudinal direction

- $\checkmark T = T_x$
- $\checkmark\,$ The resistance to the motion R
- \checkmark m = boat mass
 - $\circ~$ Acceleration profile
 - Velocity profile

$$\sum F = ma \quad \longrightarrow \quad T - R = ma \quad \longrightarrow \quad v = \frac{1}{m} \int (T - R)$$

<u>Ref.:</u> K. Matveev, Modeling of longitudinal motions of a hydroplane boat, 2012 <u>Ref.:</u> Hydrocomp techinical report, Analysis of vessel acceleration with NavCad, 2003

- Model with engine governor maps defined into Wave
 - \checkmark Maps function of rpm and load
 - o Fuel mass

DIEF Dipartimento di Ingegneria Industriale

- \circ Injection time
- o Start of injection
- ✓ Wave ↔ IGNITE through Wiring-Connector
 - $\circ~$ Wave input:
 - ✓ Engine rpm
 - ✓ Engine load
 - Wave output:
 - ✓ Torque [Nm]
 - ✓ Consumption [kg/h]
 - »

Further improvement: Wave RT implementation

> Engine torque and Brake torque at the crankshaft in function of the engine speed

- ✓ Imposed an abrupt requested of torque from the minimum to the full load
- ✓ Analysis of the maximum acceleration of the planing boat

- > Brake torque at the propeller shaft $\rightarrow Q = K_Q \rho n^2 d^5$
 - ✓ Graphic in function of the torque coefficient $K_Q(J)$
 - $\circ~$ Quadratic trend in function of the rotational speed

Trend of the dimensionless coefficients of the propeller

Numerical model

Experimental (from literature)

Simulation Results: Transmission dynamics

> Engine torque and Brake torque at the crankshaft in function of time

Simulation Results: Transmission dynamics

Thrust vs Resistance in function of the boat velocity

Simulation Results: Transmission dynamics

Propeller Thrust vs Engine Torque for boat acceleration

Thrust – Resistance – Acceleration – Velocity in function of the time

Brake specific fuel consumption

Model Validation in a failure case

- Simulation of the failure to reach the planing phase
 - ✓ Input: reduction of the torque and power of the engine
 - ✓ Result
 - $\circ~$ The boat doesn't reach the planing condition
 - $\circ~$ Reduction of the maximum boat speed

Conclusions

- First step of development of an integrated engine-boat model for planing hull
 - \checkmark Turbocharger engine \rightarrow analysis of the coupling between engine and turbo
 - ✓ Engine model integrated with a simplified model of the boat longitudinal dynamic
 - Simulation of the boat acceleration and the transition from displacement to planing phase
 - $_{\odot}~$ The model's reliability is verified by comparison with literature data

Future development

- ✓ Mathematical implementation of the motion resistance equation
- ✓ Mathematical implementation for the analysis of surface propellers
- Coupling with an electrical turbo in order to promote the transition to the planing phase
 - $\circ~$ Turbocharger used to recover the surplus energy
- ✓ Integration with WAVE RT
- ✓ Experimental validation of the model

Department of Industrial Engineering, University of Firenze, Firenze (Italy)

> Leonardo - Engineers for Integration Torino (Italy)

TURBOCHARGHED DIESEL ENGINE COUPLED WITH PLANING VESSEL

Ricardo Software 2015 European User Conference

Prof. Giovanni Ferrara - Giovanni Vichi - Pietro Bianchi